Math 3070/6070 Homework 6

Due: No submission

- 1. (4.1) A random point (X,Y) is distributed uniformly on the square with vertices (1,1), (1,-1), (-1,1), and (-1,-1). That is, the joint pdf if $f(x,y)=\frac{1}{4}$ on the square. Determine the probabilities of the following events.
 - 1. $X^2 + Y^2 < 1$
 - 2. 2X Y > 0
 - 3. |X + Y| < 2
- 2. (4.5)
 - 1. Find $\Pr(X > \sqrt{Y})$ if X and Y are jointly distributed with pdf

$$f(x,y) = x + y, \quad 0 \le x \le 1, \quad 0 \le y \le 1$$

2. Find $Pr(X^2 < Y < X)$ if X and Y are jointly distributed with pdf

$$f(X,y) = 2x, \quad 0 \le x \le 1, \quad 0 \le y \le 1$$

- 3. (4.11) Let U = the number of trials needed to get the first head and V = the number of trials needed to get two heads in repeated tosses of a fair coin. Are U and V independent random variables?
- 4. (4.17) Let X be an exponential (1) random variable, and define Y to be the integer part of X+1, that is

$$Y = i + 1$$
 if and only if $i \le X < i + 1$, $i = 0, 1, 2, ...$

- 1. Find the distribution of Y. What well-known distribution does Y have?
- 2. Find the conditional distribution of X-4 given $Y \geq 5$.
- 5. (4.20) X_1 and X_2 are independent $N(0, \sigma^2)$ random variables.
 - 1. Find the joint distribution of Y_1 and Y_2 , where

$$Y_1 = X_1^2 + X_2^2$$
 and $Y_2 = \frac{X_1}{\sqrt{Y_1}}$

2. Show that Y_1 and Y_2 are independent.